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1. INTRODUCTION

Throughout of this paper let m be an even integer and M := {0, 2, 4, ...,
m—2}. Let a be a nondecreasing function on R with infinitely many points
of increase such that all moments of dx are finite. The support of du is the
set of points of increase of a(x) and is denoted by supp(dx). The smallest
closed interval containing supp(da) is denoted by A(da). We call do a
measure. For NeN let P, denote the set of polynomials of degree at most
N and P#% the subset of polynomials in P, having real zeros only. We agree
P =P,. Put P§(x):={PeP}:P(x)=1} for xeR. 0P stands for the
exact degree of a polynomial P, ie., PeP,p\Psp_,. We define the L,,
monic extremal polynomials

P, (do,m;t)=1t"+ ---, n=0,1, ..,

satisfying

fp,,(da,m;z)mda(z)z min jP(z)mda(:). (1.1)
R R

P(x)=1t"+ ---
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According to Theorem 4 in [1], if

Xip>Xpy> +00 > X (1.2)

are the zeros of P,(dx, m;t) then the Gaussian quadrature formula with
certain numbers A := A,..(do) (called the Cotes numbers of higher order)

iknm
J, 10 datr) = z Z Faf V(x) (13)

is exact for all feP,,,_;.

As we know, the case when m =2 is the special case of orthogonal poly-
nomial; it has a long history of study and a classical theory. One of the
important contents of this theory is the Christoffel functions

J(dw, x):=  min jp(z)zda(z), (1.4)
R

PeP,_, P(x)=1
which are closely related to the Cotes numbers

Aoina(do) = A, (do, x4), k=1,2,..n (L.5)
The study and applications of the Christoffel functions can be found in [2].
In this paper we will extend the Christoffel functions to the case of the L,

extremal polynomials and investigate their properties. Further investiga-
tions and applications will be given in forthcoming papers.

2. DEFINITION AND PROPERTIES
Given a fixed xe R and neN, for PeP,_; with P(x)=1 and je M let

Ay (P, x; 1) := Ayl P, x; 1)

Jjnm

%(l—x)fBj(P,x;t)P(t)m, B(P,x; - )eP,_,_, (21)

J

satisfy the conditions

AP, x;x)=0 i=0,1,.,m—2. (2.2)

ijs

It is easy to see that 4;(P, x; ) must exist and be unique.
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DeriNITION 1. The Christoffel type function 4,,,(dx, x) (je M) with
respect to da is defined by

D, x) = inf [ AP, x: 1) da(1), (2.3)
PePY_1(x) VR
Remark 1. For n=1 it is easy to see that P§(x)= {1}, 4,(P,x;t)=

—x)7/j!, and
1 )
Zjimldot, X) = i fR (t—x)’ do(t).

In what follows we always assume n > 2.

LEmMMA 1. We have

B/(P,x;1): Y b(t—x), (2.4)
i=0
where
1 .
bi=bi(P,x)=—=[P()""12,, i=0,1,. (2.5)
1.

Moreover, for PeP}_,(x) and je M
by j—2>0, B;(P, x; 1) >0, teR (2.6)
Proof. Apply (1.3) and (2.8) in [3]. 1
Let
P,(t)=P(t)+ At —x) O(2), PeP}_(x), QeP,_,, (27)
and put f(4, 1) = A4,(P,, x; t) and g(4, t) = B;(P,, x; ).

LemmaA 2. Let for a fixed xeR and je M a polynomial PeP,_(x)
satisfy

f AP, x; 1) do(t) = D do, ). (2.8)
R
If P, in (2.7) satisfies

Condition A: there is a number 6 >0 such that P, e P¥_,(x)
holds for every A€[0,d],

then
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where
q(t)=(t—x)7="* 1 [g4(0, 1) P(1) +m(t—x) O(1) g(0,)]  (2.10)
and
4 €Praxor—1,00} - (2.11)

Proof. By (2.8) and Condition A we conclude

lim inf | G hat (D))

A—>+0 IR A

do(t) = 0.

Thus to prove (2.9) it suffices to establish

S0, 1) =10, ¢

lim inf ) dn(t) = j 740, £) da(1) (2.12)

A—> +0 Jgp l

and

1
10, 1) =ﬁ[(t—X) P(1)]1" " q(2). (2.13)

To this end we observe that the function (i >=0)

1 . 1 7 .
APy ) = P10 = <m>[P(t)”“”(t—X)”Q(t)”]i’lxi”

il o\
is a polynomial in A of degree at most m. From the identity
[Pi(t)" Py(1) "1 =0, iz,

applying the Newton-Leibniz formula and using (2.5) yields

Z dv(P}nx) bifv(Pﬂa X)ZO, l> 1
v=0

Hence

bO(P}nx)zla bi(PA:x)z_ Z dv(Piax)bifv(Plny l>1
v=1
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Thus b,(P,, x) is also a polynomial in A of degree at most im. By (2.1),
(2.4), and (2.7) both g(4, t) and (4, t) exist and are polynomials in A of
degree at most m(m — j—1). Meanwhile

I .
Sl 1) == (1 =x) [ g3(4, 1) Py(1)" +m(1—x) Q(1) Pyt)" ' g(2,1)].
o (2.14)

Then the integral ER f(4, t) du(t) converges uniformly for Ae[0,d].
Hence (2.12) is true. On the other hand, by (2.14)

1 A
10, 1) = (t=x)7 P(t)" " [ £4(0, 1) P(t) + m(t —x) Q(1) (0, 1)]

is a polynomial in ¢. According to (2.2)

AD(P,, x; x)— AP, x;x) =0 i=0,1,.,m—2,

ij>

which shows that the polynomial A,(P,,x;t)—A;(P,x;t)=f(41)—
(0, ¢) in ¢ contains the factor (1 —x)™~!, so does the polynomial 170, t).
Thus (2.13) with (2.10) follows. Since g5(0,-), g(0,-)eP,,_; ,, (2.10)
implies (2.11). |

LEMMA 3. For a fixed xeR and jeM there exists a polynomial
PeP}_ (x) such that (2.8) holds.

Moreover, if (2.8) is true then OP>=n—2, P has distinct real zeros only,
and

j [(t—x) P(1)]" ' qt) da(t) =0,  YgeP,_,. (2.15)

Proof. Assume that P, e P}

n—1

(x) satisfies

N — o

lim j APy, x; 1) da(1) = Ay dot, X).
R
Then

f APy, x: 1) du(t)<c< +o0,  VYNeN.

R

Write

mn—2

A (Py,x; )= Y apyt
k=0
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Thus the previous inequality implies by Theorem of Equivalent Norms of
finite dimensional spaces that

laen| <y < + o0, k=0,1,..,mn—2, VYN e N.

According to the Bolzano—Weierstrass Theorem by passing to a sub-
sequence if necessary we may suppose that Py — P (N— o). Then
PeP}_,(x) and (2.8) holds.

n—1

Let us prove the second part of the lemma. Assume
P t— Pk
P11 (524",
k=1 \X " V&
where + 00>y, >y,> .-+ >y, > —00, Py, P2, ., Pr €NL
Claim 1. p,=1,k=1,2,..,r

Suppose to the contrary that p,>1 for some k, 1<k<r. Choose
O(t)= —(t—x) P(t)/(t — y;)? which obviously satisfies Condition A. In
this case by (2.10) we can write

q(1)=C(1) Q(1), (2.16)
where
C(t)=(t—x)/ " [ —gi(0, 1)(t — y)* +m(t—x)* g(0, 1)]

is a polynomial in z. Relation (2.11) shows d¢ < 0Q and hence C(t) = C. By
(2.6)

C=C(y)=m(yr—x)7""*2 g(0, y)
=m(y,—x)/~"*? B;(P, x; y,) >0.

J, T P01 (1) () =

contradicting (2.9). This proves Claim 1.
Claim 2. r=n-—2.

Suppose not and let r<n—2. By Claim1 we have 0P=r<n—2.
Choose Q(t)= —(t—x) P(t), which belongs to P,_, and obviously
satisfies Condition A. In the present case by (2.10) we get (2.16), where

C(t) = (t—x)"~" [ —£4(0, 1) + m(t—x)* g(0, 1) ].
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Again C(t)=C. Since 0gy(0,-)<d[(- —x)*>g(0,-)], by (26) C=
mb,, _;_,>0. This leads to a contradiction

J, C=) P01 g0) dtt) = = C | [0 =) P(0)]" d(1) <0

and proves Claim 2.

Claim 3. We have that

—x)"~ L P(¢)™
[ PO G0, k=12, (17)
R Z_yk
and if r =n—2 then
| t=xym=t P(ey do) =0, (219)
R

To prove (2.17) choose Q(t) = + P(t)/(t — yi), | <k <r, which obviously
satisfies Condition A. By the same argument as above we obtain (2.16) and
by (2.6)

C(1)=(t—x)7 =" [ 2850, O)(t = yi) +m(t —x) (0, 1)]
= C(yi) =m(ye—x)""*2 (0, yy)
=m(y,—x)/~"+? Bi(P, x; y;)>0.

Then

| T=x) Py gte) do(t) = Cyo) | (e =x) P(1)]" 1 Q(1) dint)

R R

=0, (2.19)

which implies (2.17).

Similarly, choosing Q(¢) = + P(t) we can prove (2.18) if r=n—2.

Now we are in position to prove (2.15). If r=n—1 then (2.17) means
(2.15), since the set {P(¢)/(t— y,), ... P(1)/(t—y,_,)} spans the space
P,_,; if r=n—2 then (2.17) and (2.18) implies (2.15), since the set
{P(t)/(t—y1), s P(1)/(t— y,_,), P(1)} spans the space P,_,. |

The first main result in this paper is the following
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THEOREM 1. Let xe R be fixed.
(a) There exists a unique polynomial P € P}_ (x) such that (2.8) holds
for every je M,
(b) O0P=n—2 and P has distinct real zeros only;
(c) Equation (2.8) is true if and only if (2.15) holds;
(d) We have

A (dot, x)

m—2,nm

1
n
ox)=1(m—2)!

= mi
QePq1,

[ oy t—xy=2ann).  (220)
R

Proof. We distinguish the two cases when j=m —2 and j<m —2.
Case 1. j=m-—2.
Let

G.={(t—x)Q(1): QeP,_,}. (2.21)

Let us consider the extremal problem: find Pe P, _; such that P(x)=1 and
j P(1)™ (t — x)" 2 du(1)
R
-  min f O(1)™ (1 — x)" =2 da(1). (2.22)
QePy_1, 0(x)=1YR

It is easy to see that (2.22) is true if and only if R=1— P( € G,) satisfies
| 1= RO (1= x)" =2 datr)
R

— min f [1—0()]" (1—x)"~2 da(1). (2.23)
R

QeGy

But this is a problem of L,, approximation to the function 1 with respect
to the measure (# — x)™ =2 du(t) from the (n — 1)-dimensional subspace G, .
By [4, Corollary 2.2, p. 98, Corollary 3.5, p. 111, Theorem 1.11, p. 56] we
conclude that there is a unique function R € G, satisfying (2.23) and further
(2.23) holds if and only if

J[1—R(z)]’”*lq(t)(t—x)”‘*zdoc(t)zo, VgeG,.  (224)
R
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Recalling R=1—P, (2.24) is equivalent to (2.15). This means by (2.21)
that there is a unique polynomial PeP,_; with P(x)=1 satisfying (2.22)
and further (2.22) holds if and only if (2.15) is valid. Equation (2.15) shows
that the polynomial (z —x) P(¢) in ¢t changes sign at least n — 1 times and
hence P(t) changes sign at least n—2 times. But Pe P, _,. So P has dis-
tinct real zeros only and hence PeP}_,(x). By (2.1), (2.4), and (2.5) we
see

A, _o(P,x;t)= (t—x)"=2 P(t)". (2.25)

1
(m—2)!
This proves Statements (a)—(d) for the case when j=m — 2.

Case 2. j<m—2. In this case by Lemma 3 it suffices to show the
uniqueness of a solution of (2.8) and the implication (2.15) = (2.8). To this
end it is enough to establish the uniqueness of a solution satisfying (2.15),
which is verified by Case 1. ||

As a immediate consequence of Theorem 1 we state

COROLLARY 1. We have
Aon2(dot, X) = ,(dot, x). (2.26)

COROLLARY 2. [If PeP}_ (x) satisfies (2.8) then the interval A(dw) con-

n—1

tains at least n— 2 zeros of P.

Proof. Suppose to the contrary that 4(do) contains r( <n—3) zeros of
P, say, y,, .., y,. For q(t)=(t—x)(t— y,)--- (t— y,) we see that the poly-
nomial [(z—x) P(¢)]™ " q(t) does not change sign in A(dx), which implies
that its integral over A4(dw) is not zero, contradicting (2.15). ||

The second main result in this paper is the following

THEOREM 2. We have

L A0) = (ot X1, (o) ), k=1,2,..,n, jeM.  (2.27)

J

Proof. Let k, 1<k<n, and jeM be fixed. If (1.2) is the zeros of
P,(dx, m; t), then it follows from (1.1) by [4, Theorem 1.11, p. 56] that

j P (do, i )"~ q(1) du(1) =0,  VYgeP, .,

R
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or equivalently

JR [(t—2x,) P(1)]" " q(t) du(t) =0,  VgqeP,_,, (2.28)

where P(¢) =11, [(t—x;)/(x;z—X;)]. According to Theorem 1, Eq. (2.28)
means

Lyl X,) =f AP, x;: 1) da1).

R

Inserting f(¢) = A;(P, x;; t) into (1.3) the above relation immediately gives
(2.27). 1

THEOREM 3. (a) If du<<df then
Loty X) < D AP, X ), xeR, jeM; (2.29)
(b) we have
Aonm( Aoty X) Z A dt, X). (2.30)

Proof. (a) Inequality (2.29) follows directly from (2.3).
(b) By (14)

Jpma(da, X) = min ! 2[ O(1)? d(1).

QePuup—1 Q(X)

Then

() < Zpplda )™ | QU (). QP (231)

Let PeP}_,(x) satisty (2.8) with j=0. Since 4,(P, x;¢)=0 in R, by [5,
Theorem 1.21.2, p. 5] it may be written as

Ao(P, x5 1) =R(1)*+ O(1)?, R, QePipny_1-
Thus by (2.31)

Ao(P, x5 1) = R(1)* + Q(1)* < Appplda, 1) f [R(5)*+ O(s)*] d(s)

= hmalda 1) 7" | AP, 5) dis)

= /Imn/2(d<xa Z) Onm(da x) (232)
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Putting 1 = x we get
1 < A’mn/Z(das X) - )*Onm(d(xa x),

which is equivalent to (2.30). |
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