On Christoffel Type Functions for L_{m} Extremal Polynomials, I^{1}

Ying Guang Shi ${ }^{2}$
Department of Mathematics, Hunan Normal University, Changsha, Hunan, People's Republic of China
E-mail: syg@lsec.cc.ac.cn
Communicated by Doron S. Lubinsky

Received January 12, 1999; accepted September 16, 1999

The Christoffel functions for orthogonal polynomials are extended to the case of L_{m} extremal polynomials with an even integer m and their properties are given. (C) 2000 Academic Press

1. INTRODUCTION

Throughout of this paper let m be an even integer and $\mathbf{M}:=\{0,2,4, \ldots$, $m-2\}$. Let α be a nondecreasing function on \mathbb{R} with infinitely many points of increase such that all moments of $d \alpha$ are finite. The support of $d \alpha$ is the set of points of increase of $\alpha(x)$ and is denoted by $\operatorname{supp}(d \alpha)$. The smallest closed interval containing $\operatorname{supp}(d \alpha)$ is denoted by $\Delta(d \alpha)$. We call $d \alpha$ a measure. For $N \in \mathbb{N}$ let \mathbf{P}_{N} denote the set of polynomials of degree at most N and \mathbf{P}_{N}^{*} the subset of polynomials in \mathbf{P}_{N} having real zeros only. We agree $\mathbf{P}_{0}^{*}=\mathbf{P}_{0}$. Put $\mathbf{P}_{N}^{*}(x):=\left\{P \in \mathbf{P}_{N}^{*}: P(x)=1\right\}$ for $x \in \mathbb{R}$. ∂P stands for the exact degree of a polynomial P, i.e., $P \in \mathbf{P}_{\partial P} \backslash \mathbf{P}_{\partial P-1}$. We define the L_{m} monic extremal polynomials

$$
P_{n}(d \alpha, m ; t)=t^{n}+\cdots, \quad n=0,1, \ldots,
$$

satisfying

$$
\begin{equation*}
\int_{\mathbb{R}} P_{n}(d \alpha, m ; t)^{m} d \alpha(t)=\min _{P(x)=t^{a}+\ldots} \int_{\mathbb{R}} P(t)^{m} d \alpha(t) . \tag{1.1}
\end{equation*}
$$

[^0]According to Theorem 4 in [1], if

$$
\begin{equation*}
x_{1 n}>x_{2 n}>\cdots>x_{n n} \tag{1.2}
\end{equation*}
$$

are the zeros of $P_{n}(d \alpha, m ; t)$ then the Gaussian quadrature formula with certain numbers $\lambda_{i k}:=\lambda_{i k n m}(d \alpha)$ (called the Cotes numbers of higher order)

$$
\begin{equation*}
\int_{\mathbb{R}} f(t) d \alpha(t)=\sum_{i=0}^{m-2} \sum_{k=1}^{n} \lambda_{i k} f^{(i)}\left(x_{k}\right) \tag{1.3}
\end{equation*}
$$

is exact for all $f \in \mathbf{P}_{m n-1}$.
As we know, the case when $m=2$ is the special case of orthogonal polynomial; it has a long history of study and a classical theory. One of the important contents of this theory is the Christoffel functions

$$
\begin{equation*}
\lambda_{n}(d \alpha, x):=\min _{P \in \mathbf{P}_{n-1}, P(x)=1} \int_{\mathbb{R}} P(t)^{2} d \alpha(t) \tag{1.4}
\end{equation*}
$$

which are closely related to the Cotes numbers

$$
\begin{equation*}
\lambda_{0 k n 2}(d \alpha)=\lambda_{n}\left(d \alpha, x_{k n}\right), \quad k=1,2, \ldots, n . \tag{1.5}
\end{equation*}
$$

The study and applications of the Christoffel functions can be found in [2]. In this paper we will extend the Christoffel functions to the case of the L_{m} extremal polynomials and investigate their properties. Further investigations and applications will be given in forthcoming papers.

2. DEFINITION AND PROPERTIES

Given a fixed $x \in \mathbb{R}$ and $n \in \mathbb{N}$, for $P \in \mathbf{P}_{n-1}$ with $P(x)=1$ and $j \in \mathbf{M}$ let

$$
\begin{align*}
A_{j}(P, x ; t) & :=A_{j n m}(P, x ; t) \\
& :=\frac{1}{j!}(t-x)^{j} B_{j}(P, x ; t) P(t)^{m}, \quad B_{j}(P, x ; \cdot) \in \mathbf{P}_{m-j-2}, \tag{2.1}
\end{align*}
$$

satisfy the conditions

$$
\begin{equation*}
A_{j}^{(i)}(P, x ; x)=\delta_{i j}, \quad i=0,1, \ldots, m-2 . \tag{2.2}
\end{equation*}
$$

It is easy to see that $A_{j}(P, x ; t)$ must exist and be unique.

Definition 1. The Christoffel type function $\lambda_{j n m}(d \alpha, x)(j \in \mathbf{M})$ with respect to $d \alpha$ is defined by

$$
\begin{equation*}
\lambda_{j n m}(d \alpha, x)=\inf _{P \in \mathbf{P}_{\Delta-1}^{*}-1(x)} \int_{\mathbb{R}} A_{j}(P, x ; t) d \alpha(t) . \tag{2.3}
\end{equation*}
$$

Remark 1. For $n=1$ it is easy to see that $\mathbf{P}_{0}^{*}(x)=\{1\}, A_{j}(P, x ; t)=$ $(t-x)^{j} / j$!, and

$$
\lambda_{j 1 m}(d x, x)=\frac{1}{j!} \int_{\mathbb{R}}(t-x)^{j} d x(t) .
$$

In what follows we always assume $n \geqslant 2$.
Lemma 1. We have

$$
\begin{equation*}
B_{j}(P, x ; t): \sum_{i=0}^{m-j-2} b_{i}(t-x)^{i}, \tag{2.4}
\end{equation*}
$$

where

$$
\begin{equation*}
b_{i}=b_{i}(P, x)=\frac{1}{i!}\left[P(t)^{-m}\right]_{t=x}^{(i)}, \quad i=0,1, \ldots \tag{2.5}
\end{equation*}
$$

Moreover, for $P \in \mathbf{P}_{n-1}^{*}(x)$ and $j \in \mathbf{M}$

$$
\begin{equation*}
b_{m-j-2}>0, \quad B_{j}(P, x ; t)>0, \quad t \in \mathbb{R} . \tag{2.6}
\end{equation*}
$$

Proof. Apply (1.3) and (2.8) in [3].
Let

$$
\begin{equation*}
P_{\lambda}(t)=P(t)+\lambda(t-x) Q(t), \quad P \in \mathbf{P}_{n-1}^{*}(x), \quad Q \in \mathbf{P}_{n-2}, \tag{2.7}
\end{equation*}
$$

and put $f(\lambda, t)=A_{j}\left(P_{\lambda}, x ; t\right)$ and $g(\lambda, t)=B_{j}\left(P_{\lambda}, x ; t\right)$.
Lemma 2. Let for a fixed $x \in \mathbb{R}$ and $j \in \mathbf{M}$ a polynomial $P \in \mathbf{P}_{n-1}(x)$ satisfy

$$
\begin{equation*}
\int_{\mathbb{R}} A_{j}(P, x ; t) d \alpha(t)=\lambda_{j n m}(d \alpha, x) . \tag{2.8}
\end{equation*}
$$

If P_{λ} in (2.7) satisfies
Condition A : there is a number $\delta>0$ such that $P_{\lambda} \in \mathbf{P}_{n-1}^{*}(x)$ holds for every $\lambda \in[0, \delta]$,
then

$$
\begin{equation*}
\int_{\mathbb{R}}[(t-x) P(t)]^{m-1} q(t) d \alpha(t) \geqslant 0, \tag{2.9}
\end{equation*}
$$

where

$$
\begin{equation*}
q(t)=(t-x)^{j-m+1}\left[g_{\lambda}^{\prime}(0, t) P(t)+m(t-x) Q(t) g(0, t)\right] \tag{2.10}
\end{equation*}
$$

and

$$
\begin{equation*}
q \in \mathbf{P}_{\max \{\partial P-1, \partial Q\}} \tag{2.11}
\end{equation*}
$$

Proof. By (2.8) and Condition A we conclude

$$
\liminf _{\lambda \rightarrow+0} \int_{\mathbb{R}} \frac{f(\lambda, t)-f(0, t)}{\lambda} d \alpha(t) \geqslant 0
$$

Thus to prove (2.9) it suffices to establish

$$
\begin{equation*}
\liminf _{\lambda \rightarrow+0} \int_{\mathscr{R}} \frac{f(\lambda, t)-f(0, t)}{\lambda} d \alpha(t)=\int_{\mathbb{R}} f_{\lambda}^{\prime}(0, t) d \alpha(t) \tag{2.12}
\end{equation*}
$$

and

$$
\begin{equation*}
f_{\lambda}^{\prime}(0, t)=\frac{1}{j!}[(t-x) P(t)]^{m-1} q(t) . \tag{2.13}
\end{equation*}
$$

To this end we observe that the function $(i \geqslant 0)$

$$
d_{i}\left(P_{\lambda}, x\right)=\frac{1}{i!}\left[P_{\lambda}(t)^{m}\right]_{t=x}^{(i)}=\frac{1}{i!} \sum_{v=0}^{m}\binom{m}{v}\left[P(t)^{m-v}(t-x)^{v} Q(t)^{v}\right]_{t=x}^{(i)} \lambda^{v}
$$

is a polynomial in λ of degree at most m. From the identity

$$
\left[P_{\lambda}(t)^{m} P_{\lambda}(t)^{-m}\right]^{(i)}=0, \quad i \geqslant 1
$$

applying the Newton-Leibniz formula and using (2.5) yields

$$
\sum_{v=0}^{i} d_{v}\left(P_{\lambda}, x\right) b_{i-v}\left(P_{\lambda}, x\right)=0, \quad i \geqslant 1
$$

Hence

$$
b_{0}\left(P_{\lambda}, x\right)=1, \quad b_{i}\left(P_{\lambda}, x\right)=-\sum_{v=1}^{i} d_{v}\left(P_{\lambda}, x\right) b_{i-v}\left(P_{\lambda}, x\right), \quad i \geqslant 1 .
$$

Thus $b_{i}\left(P_{\lambda}, x\right)$ is also a polynomial in λ of degree at most im. By (2.1), (2.4), and (2.7) both $g_{\lambda}^{\prime}(\lambda, t)$ and $f_{\lambda}^{\prime}(\lambda, t)$ exist and are polynomials in λ of degree at most $m(m-j-1)$. Meanwhile

$$
\begin{equation*}
f_{\lambda}^{\prime}(\lambda, t)=\frac{1}{j!}(t-x)^{j}\left[g_{\lambda}^{\prime}(\lambda, t) P_{\lambda}(t)^{m}+m(t-x) Q(t) P_{\lambda}(t)^{m-1} g(\lambda, t)\right] . \tag{2.14}
\end{equation*}
$$

Then the integral $\int_{\mathbb{R}} f_{\lambda}^{\prime}(\lambda, t) d \alpha(t)$ converges uniformly for $\lambda \in[0, \delta]$. Hence (2.12) is true. On the other hand, by (2.14)

$$
f_{\lambda}^{\prime}(0, t)=\frac{1}{j!}(t-x)^{j} P(t)^{m-1}\left[g_{\lambda}^{\prime}(0, t) P(t)+m(t-x) Q(t) g(0, t)\right]
$$

is a polynomial in t. According to (2.2)

$$
A_{j}^{(i)}\left(P_{\lambda}, x ; x\right)-A_{j}^{(i)}(P, x ; x)=\delta_{i j}, \quad i=0,1, \ldots, m-2,
$$

which shows that the polynomial $A_{j}\left(P_{\lambda}, x ; t\right)-A_{j}(P, x ; t)=f(\lambda, t)-$ $f(0, t)$ in t contains the factor $(t-x)^{m-1}$, so does the polynomial $f_{\lambda}^{\prime}(0, t)$. Thus (2.13) with (2.10) follows. Since $g_{\lambda}^{\prime}(0, \cdot), g(0, \cdot) \in \mathbf{P}_{m-j-2}, \quad(2.10)$ implies (2.11).

Lemma 3. For a fixed $x \in \mathbb{R}$ and $j \in \mathbf{M}$ there exists a polynomial $P \in \mathbf{P}_{n-1}^{*}(x)$ such that (2.8) holds.

Moreover, if (2.8) is true then $\partial P \geqslant n-2, P$ has distinct real zeros only, and

$$
\begin{equation*}
\int_{\mathbb{R}}[(t-x) P(t)]^{m-1} q(t) d \alpha(t)=0, \quad \forall q \in \mathbf{P}_{n-2} \tag{2.15}
\end{equation*}
$$

Proof. Assume that $P_{N} \in \mathbf{P}_{n-1}^{*}(x)$ satisfies

$$
\lim _{N \rightarrow \infty} \int_{\mathbb{R}} A_{j}\left(P_{N}, x ; t\right) d \alpha(t)=\lambda_{j n m}(d x, x) .
$$

Then

$$
\int_{\mathbb{R}} A_{j}\left(P_{N}, x ; t\right) d \alpha(t) \leqslant c<+\infty, \quad \forall N \in \mathbb{N} .
$$

Write

$$
A_{j}\left(P_{N}, x ; t\right)=\sum_{k=0}^{m n-2} a_{k N} t^{k} .
$$

Thus the previous inequality implies by Theorem of Equivalent Norms of finite dimensional spaces that

$$
\left|a_{k N}\right| \leqslant c_{1}<+\infty, \quad k=0,1, \ldots, m n-2, \quad \forall N \in \mathbb{N} .
$$

According to the Bolzano-Weierstrass Theorem by passing to a subsequence if necessary we may suppose that $P_{N} \rightarrow P(N \rightarrow \infty)$. Then $P \in \mathbf{P}_{n-1}^{*}(x)$ and (2.8) holds.

Let us prove the second part of the lemma. Assume

$$
P(t)=\prod_{k=1}^{p}\left(\frac{t-y_{k}}{x-y_{k}}\right)^{p_{k}},
$$

where $+\infty>y_{1}>y_{2}>\cdots>y_{r}>-\infty, p_{1}, p_{2}, \ldots, p_{r} \in \mathbb{N}$.
Claim 1. $p_{k}=1, k=1,2, \ldots, r$.
Suppose to the contrary that $p_{k}>1$ for some $k, 1 \leqslant k \leqslant r$. Choose $Q(t)=-(t-x) P(t) /\left(t-y_{k}\right)^{2}$, which obviously satisfies Condition A. In this case by (2.10) we can write

$$
\begin{equation*}
q(t)=C(t) Q(t) \tag{2.16}
\end{equation*}
$$

where

$$
C(t)=(t-x)^{j-m}\left[-g_{\lambda}^{\prime}(0, t)\left(t-y_{k}\right)^{2}+m(t-x)^{2} g(0, t)\right]
$$

is a polynomial in t. Relation (2.11) shows $\partial q \leqslant \partial Q$ and hence $C(t) \equiv C$. By (2.6)

$$
\begin{aligned}
C & =C\left(y_{k}\right)=m\left(y_{k}-x\right)^{j-m+2} g\left(0, y_{k}\right) \\
& =m\left(y_{k}-x\right)^{j-m+2} B_{j}\left(P, x ; y_{k}\right)>0 .
\end{aligned}
$$

Then

$$
\int_{\mathbb{R}}[(t-x) P(t)]^{m-1} q(t) d \alpha(t)=-C \int_{\mathbb{R}} \frac{[(t-x) P(t)]^{m}}{\left(t-y_{k}\right)^{2}} d \alpha(t)<0,
$$

contradicting (2.9). This proves Claim 1.
Claim 2. $r \geqslant n-2$.
Suppose not and let $r<n-2$. By Claim 1 we have $\partial P=r<n-2$. Choose $Q(t)=-(t-x) P(t)$, which belongs to \mathbf{P}_{n-2} and obviously satisfies Condition A. In the present case by (2.10) we get (2.16), where

$$
C(t)=(t-x)^{j-m}\left[-g_{\lambda}^{\prime}(0, t)+m(t-x)^{2} g(0, t)\right] .
$$

Again $C(t) \equiv C$. Since $\partial g_{\lambda}^{\prime}(0, \cdot)<\partial\left[(\cdot-x)^{2} g(0, \cdot)\right]$, by (2.6) $C=$ $m b_{m-j-2}>0$. This leads to a contradiction

$$
\int_{\mathbb{R}}[(t-x) P(t)]^{m-1} q(t) d \alpha(t)=-C \int_{\mathbb{R}}[(t-x) P(t)]^{m} d \alpha(t)<0
$$

and proves Claim 2.
Claim 3. We have that

$$
\begin{equation*}
\int_{\mathbb{R}} \frac{(t-x)^{m-1} P(t)^{m}}{t-y_{k}} d \alpha(t)=0, \quad k=1,2, \ldots, r, \tag{2.17}
\end{equation*}
$$

and if $r=n-2$ then

$$
\begin{equation*}
\int_{\mathbb{R}}(t-x)^{m-1} P(t)^{m} d \alpha(t)=0 . \tag{2.18}
\end{equation*}
$$

To prove (2.17) choose $Q(t)= \pm P(t) /\left(t-y_{k}\right), 1 \leqslant k \leqslant r$, which obviously satisfies Condition A. By the same argument as above we obtain (2.16) and by (2.6)

$$
\begin{aligned}
C(t) & =(t-x)^{j-m+1}\left[\pm g_{\lambda}^{\prime}(0, t)\left(t-y_{k}\right)+m(t-x) g(0, t)\right] \\
& \equiv C\left(y_{k}\right)=m\left(y_{k}-x\right)^{j-m+2} g\left(0, y_{k}\right) \\
& =m\left(y_{k}-x\right)^{j-m+2} B_{j}\left(P, x ; y_{k}\right)>0 .
\end{aligned}
$$

Then

$$
\begin{align*}
\int_{\mathbb{R}}[(t-x) P(t)]^{m-1} q(t) d \alpha(t) & =C\left(y_{k}\right) \int_{\mathbb{R}}[(t-x) P(t)]^{m-1} Q(t) d \alpha(t) \\
& \geqslant 0 \tag{2.19}
\end{align*}
$$

which implies (2.17).
Similarly, choosing $Q(t)= \pm P(t)$ we can prove (2.18) if $r=n-2$.
Now we are in position to prove (2.15). If $r=n-1$ then (2.17) means (2.15), since the set $\left\{P(t) /\left(t-y_{1}\right), \ldots, P(t) /\left(t-y_{n-1}\right)\right\}$ spans the space \mathbf{P}_{n-2}; if $r=n-2$ then (2.17) and (2.18) implies (2.15), since the set $\left\{P(t) /\left(t-y_{1}\right), \ldots, P(t) /\left(t-y_{n-2}\right), P(t)\right\}$ spans the space \mathbf{P}_{n-2}.

The first main result in this paper is the following

Theorem 1. Let $x \in \mathbb{R}$ be fixed.
(a) There exists a unique polynomial $P \in \mathbf{P}_{n-1}^{*}(x)$ such that (2.8) holds for every $j \in \mathbf{M}$;
(b) $\partial P \geqslant n-2$ and P has distinct real zeros only;
(c) Equation (2.8) is true if and only if (2.15) holds;
(d) We have

$$
\begin{align*}
& \lambda_{m-2, n, m}(d \alpha, x) \\
& \quad=\min _{Q \in \mathbf{P}_{a-1}, Q(x)=1} \frac{1}{(m-2)!} \int_{\mathbb{R}} Q(t)^{m}(t-x)^{m-2} d \alpha(t) . \tag{2.20}
\end{align*}
$$

Proof. We distinguish the two cases when $j=m-2$ and $j<m-2$.
Case 1. $j=m-2$.
Let

$$
\begin{equation*}
G_{x}=\left\{(t-x) Q(t): Q \in \mathbf{P}_{n-2}\right\} . \tag{2.21}
\end{equation*}
$$

Let us consider the extremal problem: find $P \in \mathbf{P}_{n-1}$ such that $P(x)=1$ and

$$
\begin{align*}
& \int_{\mathbb{R}} P(t)^{m}(t-x)^{m-2} d \alpha(t) \\
& \quad=\min _{Q \in \mathbf{P}_{n-1}, Q(x)=1} \int_{\mathbb{R}} Q(t)^{m}(t-x)^{m-2} d \alpha(t) . \tag{2.22}
\end{align*}
$$

It is easy to see that (2.22) is true if and only if $R=1-P\left(\in G_{x}\right)$ satisfies

$$
\begin{align*}
\int_{\mathbb{R}} & {[1-R(t)]^{m}(t-x)^{m-2} d \alpha(t) } \\
& =\min _{Q \in G_{x}} \int_{\mathbb{R}}[1-Q(t)]^{m}(t-x)^{m-2} d \alpha(t) . \tag{2.23}
\end{align*}
$$

But this is a problem of L_{m} approximation to the function 1 with respect to the measure $(t-x)^{m-2} d \alpha(t)$ from the $(n-1)$-dimensional subspace G_{x}. By [4, Corollary 2.2, p. 98, Corollary 3.5, p. 111, Theorem 1.11, p. 56] we conclude that there is a unique function $R \in G_{x}$ satisfying (2.23) and further (2.23) holds if and only if

$$
\begin{equation*}
\int_{\mathbb{R}}[1-R(t)]^{m-1} q(t)(t-x)^{m-2} d \alpha(t)=0, \quad \forall q \in G_{x} \tag{2.24}
\end{equation*}
$$

Recalling $R=1-P$, (2.24) is equivalent to (2.15). This means by (2.21) that there is a unique polynomial $P \in \mathbf{P}_{n-1}$ with $P(x)=1$ satisfying (2.22) and further (2.22) holds if and only if (2.15) is valid. Equation (2.15) shows that the polynomial $(t-x) P(t)$ in t changes sign at least $n-1$ times and hence $P(t)$ changes sign at least $n-2$ times. But $P \in \mathbf{P}_{n-1}$. So P has distinct real zeros only and hence $P \in \mathbf{P}_{n-1}^{*}(x)$. By (2.1), (2.4), and (2.5) we see

$$
\begin{equation*}
A_{m-2}(P, x ; t)=\frac{1}{(m-2)!}(t-x)^{m-2} P(t)^{m} . \tag{2.25}
\end{equation*}
$$

This proves Statements (a)-(d) for the case when $j=m-2$.
Case 2. $j<m-2$. In this case by Lemma 3 it suffices to show the uniqueness of a solution of (2.8) and the implication $(2.15) \Rightarrow(2.8)$. To this end it is enough to establish the uniqueness of a solution satisfying (2.15), which is verified by Case 1 .

As a immediate consequence of Theorem 1 we state

Corollary 1. We have

$$
\begin{equation*}
\lambda_{0 n 2}(d \alpha, x)=\lambda_{n}(d \alpha, x) . \tag{2.26}
\end{equation*}
$$

Corollary 2. If $P \in \mathbf{P}_{n-1}^{*}(x)$ satisfies (2.8) then the interval $\Delta(d \alpha)$ contains at least $n-2$ zeros of P.

Proof. Suppose to the contrary that $\Delta(d \alpha)$ contains $r(\leqslant n-3)$ zeros of P, say, y_{1}, \ldots, y_{r}. For $q(t)=(t-x)\left(t-y_{1}\right) \cdots\left(t-y_{r}\right)$ we see that the polynomial $[(t-x) P(t)]^{m-1} q(t)$ does not change sign in $\Delta(d \alpha)$, which implies that its integral over $\Delta(d \alpha)$ is not zero, contradicting (2.15).

The second main result in this paper is the following

Theorem 2. We have

$$
\begin{equation*}
\lambda_{j k n m}(d \alpha)=\lambda_{j n m}\left(d \alpha, x_{k n}(d \alpha)\right), \quad k=1,2, \ldots, n, \quad j \in \mathbf{M} . \tag{2.27}
\end{equation*}
$$

Proof. Let $k, 1 \leqslant k \leqslant n$, and $j \in \mathbf{M}$ be fixed. If (1.2) is the zeros of $P_{n}(d \alpha, m ; t)$, then it follows from (1.1) by [4, Theorem 1.11, p. 56] that

$$
\int_{\mathbb{R}} P_{n}(d \alpha, m ; t)^{m-1} q(t) d \alpha(t)=0, \quad \forall q \in \mathbf{P}_{n-1},
$$

or equivalently

$$
\begin{equation*}
\int_{\mathbb{R}}\left[\left(t-x_{k}\right) P(t)\right]^{m-1} q(t) d \alpha(t)=0, \quad \forall q \in \mathbf{P}_{n-1} \tag{2.28}
\end{equation*}
$$

where $P(t)=\prod_{i \neq k}\left[\left(t-x_{i}\right) /\left(x_{k}-x_{i}\right)\right]$. According to Theorem 1, Eq. (2.28) means

$$
\lambda_{j n m}\left(d \alpha, x_{k}\right)=\int_{\mathbb{R}} A_{j}\left(P, x_{k} ; t\right) d \alpha(t) .
$$

Inserting $f(t)=A_{j}\left(P, x_{k} ; t\right)$ into (1.3) the above relation immediately gives (2.27).

Theorem 3. (a) If $d \alpha \leqslant d \beta$ then

$$
\begin{equation*}
\lambda_{j n m}(d \alpha, x) \leqslant \lambda_{j n m}(d \beta, x), \quad x \in \mathbb{R}, \quad j \in \mathbf{M} ; \tag{2.29}
\end{equation*}
$$

(b) we have

$$
\begin{equation*}
\lambda_{0 n m}(d \alpha, x) \geqslant \lambda_{m n / 2}(d \alpha, x) . \tag{2.30}
\end{equation*}
$$

Proof. (a) Inequality (2.29) follows directly from (2.3).
(b) By (1.4)

$$
\lambda_{m n / 2}(d \alpha, x)=\min _{Q \in \mathbf{P}_{(m m / 2)-1}} \frac{1}{Q(x)^{2}} \int_{\mathbb{R}} Q(t)^{2} d \alpha(t) .
$$

Then

$$
\begin{equation*}
Q(x)^{2} \leqslant \lambda_{m n / 2}(d \alpha, x)^{-1} \int_{\mathbb{R}} Q(t)^{2} d \alpha(t), \quad Q \in \mathbf{P}_{(m n / 2)-1} \tag{2.31}
\end{equation*}
$$

Let $P \in \mathbf{P}_{n-1}^{*}(x)$ satisfy (2.8) with $j=0$. Since $A_{0}(P, x ; t) \geqslant 0$ in \mathbb{R}, by [5, Theorem 1.21.2, p. 5] it may be written as

$$
A_{0}(P, x ; t)=R(t)^{2}+Q(t)^{2}, \quad R, Q \in \mathbf{P}_{(m n / 2)-1} .
$$

Thus by (2.31)

$$
\begin{align*}
A_{0}(P, x ; t) & =R(t)^{2}+Q(t)^{2} \leqslant \lambda_{m n / 2}(d \alpha, t)^{-1} \int_{\mathbb{R}}\left[R(s)^{2}+Q(s)^{2}\right] d \alpha(s) \\
& =\lambda_{m n / 2}(d \alpha, t)^{-1} \int_{\mathbb{R}} A_{0}(P, x ; s) d \alpha(s) \\
& =\lambda_{m n / 2}(d \alpha, t)^{-1} \lambda_{0 n m}(d \alpha, x) . \tag{2.32}
\end{align*}
$$

Putting $t=x$ we get

$$
1 \leqslant \lambda_{m n / 2}(d x, x)^{-1} \lambda_{0 n m}(d \alpha, x),
$$

which is equivalent to (2.30).

ACKNOWLEDGMENT

The author thanks the referees for pointing out that the original manuscript does not consider the possibility that the extremal polynomial could be of degree less than $n-1$.

REFERENCES

1. B. D. Bojanov, D. Braess, and N. Dyn, Generalized Gaussian quadrature formulas, J. Approx. Theory 48 (1986), 335-353.
2. P. Nevai, Géza Freud, Orthogonal polynomials and Christoffel functions: A case study, J. Approx. Theory 48 (1986), 3-167.
3. Y. G. Shi, On Hermite interpolation, J. Approx. Theory 102 (2000), 325-340, doi: 10.1006/jath.1999.3405.
4. I. Singer, "Best Approximation in Normed Linear Space by the Elements of Linear Subspaces," Springer-Verlag, Berlin, 1970.
5. G. Szegő, "Orthogonal Polynomials," Amer. Math. Soc. Colloq. Publ., Vol. 23, Amer. Math. Soc., Providence, RI, 1939.

[^0]: ${ }^{1}$ Project 19671082 supported by National Natural Science Foundation of China.
 ${ }^{2}$ Current address: Institute of Computational Mathematics and Scientific/Engineering Computing, Chinese Academy of Sciences, P.O. Box 2719, Beijing 100080, People's Republic of China.

