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1. INTRODUCTION

Throughout of this paper let m be an even integer and M :=[0, 2, 4, ...,
m&2]. Let : be a nondecreasing function on R with infinitely many points
of increase such that all moments of d: are finite. The support of d: is the
set of points of increase of :(x) and is denoted by supp(d:). The smallest
closed interval containing supp(d:) is denoted by 2(d:). We call d: a
measure. For N # N let PN denote the set of polynomials of degree at most
N and P*N the subset of polynomials in PN having real zeros only. We agree
P0*=P0 . Put P*N(x) :=[P # P*N : P(x)=1] for x # R. �P stands for the
exact degree of a polynomial P, i.e., P # P�P"P�P&1 . We define the Lm

monic extremal polynomials

Pn(d:, m; t)=tn+ } } } , n=0, 1, ...,

satisfying

|
R

Pn(d:, m; t)m d:(t)= min
P(x)=ta+ } } } |R

P(t)m d:(t). (1.1)
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According to Theorem 4 in [1], if

x1n>x2n> } } } >xnn (1.2)

are the zeros of Pn(d:, m; t) then the Gaussian quadrature formula with
certain numbers *ik :=*iknm(d:) (called the Cotes numbers of higher order)

|
R

f (t) d:(t)= :
m&2

i=0

:
n

k=1

* ik f (i)(xk) (1.3)

is exact for all f # Pmn&1 .
As we know, the case when m=2 is the special case of orthogonal poly-

nomial; it has a long history of study and a classical theory. One of the
important contents of this theory is the Christoffel functions

*n(d:, x) := min
P # Pn&1, P(x)=1 |R

P(t)2 d:(t), (1.4)

which are closely related to the Cotes numbers

*0kn2(d:)=*n(d:, xkn), k=1, 2, ..., n. (1.5)

The study and applications of the Christoffel functions can be found in [2].
In this paper we will extend the Christoffel functions to the case of the Lm

extremal polynomials and investigate their properties. Further investiga-
tions and applications will be given in forthcoming papers.

2. DEFINITION AND PROPERTIES

Given a fixed x # R and n # N, for P # Pn&1 with P(x)=1 and j # M let

Aj (P, x; t) :=Ajnm(P, x; t)

:=
1
j !

(t&x) j Bj (P, x; t) P(t)m, Bj (P, x; } ) # Pm& j&2 , (2.1)

satisfy the conditions

A (i)
j (P, x; x)=$ ij , i=0, 1, ..., m&2. (2.2)

It is easy to see that Aj (P, x; t) must exist and be unique.
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Definition 1. The Christoffel type function *jnm(d:, x) ( j # M) with
respect to d: is defined by

*jnm(d:, x)= inf
P # P*a&1(x) |R

Aj (P, x; t) d:(t). (2.3)

Remark 1. For n=1 it is easy to see that P0*(x)=[1], Aj (P, x; t)=
(t&x) j�j !, and

*j1m(d:, x)=
1
j ! |R

(t&x) j d:(t).

In what follows we always assume n�2.

Lemma 1. We have

Bj (P, x; t): :
m& j&2

i=0

bi (t&x) i, (2.4)

where

bi=bi (P, x)=
1
i !

[P(t)&m] (i)
t=x , i=0, 1, ... (2.5)

Moreover, for P # P*n&1(x) and j # M

bm& j&2>0, Bj (P, x; t)>0, t # R. (2.6)

Proof. Apply (1.3) and (2.8) in [3]. K

Let

P*(t)=P(t)+*(t&x) Q(t), P # P*n&1(x), Q # Pn&2 , (2.7)

and put f (*, t)=Aj (P* , x; t) and g(*, t)=B j (P* , x; t).

Lemma 2. Let for a fixed x # R and j # M a polynomial P # Pn&1(x)
satisfy

|
R

A j (P, x; t) d:(t)=* jnm(d:, x). (2.8)

If P* in (2.7) satisfies

Condition A : there is a number $>0 such that P* # P*n&1(x)
holds for every * # [0, $],

then

|
R

[(t&x) P(t)]m&1 q(t) d:(t)�0, (2.9)
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where

q(t)=(t&x) j&m+1 [ g$*(0, t) P(t)+m(t&x) Q(t) g(0, t)] (2.10)

and

q # Pmax[�P&1, �Q] . (2.11)

Proof. By (2.8) and Condition A we conclude

lim inf
* � +0 |

R

f (*, t)& f (0, t)
*

d:(t)�0.

Thus to prove (2.9) it suffices to establish

lim inf
* � +0 |

R

f (*, t)& f (0, t)
*

d:(t)=|
R

f $*(0, t) d:(t) (2.12)

and

f $*(0, t)=
1
j !

[(t&x) P(t)]m&1 q(t). (2.13)

To this end we observe that the function (i�0)

di (P* , x)=
1
i !

[P*(t)m] (i)
t=x=

1
i !

:
m

&=0
\m

& + [P(t)m&& (t&x)& Q(t)&] (i)
t=x *&

is a polynomial in * of degree at most m. From the identity

[P*(t)m P*(t)&m] (i)=0, i�1,

applying the Newton�Leibniz formula and using (2.5) yields

:
i

&=0

d&(P* , x) bi&&(P* , x)=0, i�1.

Hence

b0(P* , x)=1, bi (P* , x)=& :
i

&=1

d&(P* , x) bi&&(P* , x), i�1.
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Thus bi (P* , x) is also a polynomial in * of degree at most im. By (2.1),
(2.4), and (2.7) both g$*(*, t) and f $*(*, t) exist and are polynomials in * of
degree at most m(m& j&1). Meanwhile

f $*(*, t)=
1
j !

(t&x) j [ g$*(*, t) P*(t)m+m(t&x) Q(t) P*(t)m&1 g(*, t)].

(2.14)

Then the integral �R f $*(*, t) d:(t) converges uniformly for * # [0, $].
Hence (2.12) is true. On the other hand, by (2.14)

f $*(0, t)=
1
j !

(t&x) j P(t)m&1 [ g$*(0, t) P(t)+m(t&x) Q(t) g(0, t)]

is a polynomial in t. According to (2.2)

A(i)
j (P* , x; x)&A (i)

j (P, x; x)=$ij , i=0, 1, ..., m&2,

which shows that the polynomial Aj (P* , x; t)&Aj (P, x; t)= f (*, t)&
f (0, t) in t contains the factor (t&x)m&1, so does the polynomial f $*(0, t).
Thus (2.13) with (2.10) follows. Since g$*(0, } ), g(0, } ) # Pm& j&2 , (2.10)
implies (2.11). K

Lemma 3. For a fixed x # R and j # M there exists a polynomial
P # P*n&1(x) such that (2.8) holds.

Moreover, if (2.8) is true then �P�n&2, P has distinct real zeros only,
and

|
R

[(t&x) P(t)]m&1 q(t) d:(t)=0, \q # Pn&2 . (2.15)

Proof. Assume that PN # P*n&1(x) satisfies

lim
N � � |

R

Aj (PN , x; t) d:(t)=*jnm(d:, x).

Then

|
R

A j (PN , x; t) d:(t)�c<+�, \N # N.

Write

Aj (PN , x; t)= :
mn&2

k=0

akN tk.
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Thus the previous inequality implies by Theorem of Equivalent Norms of
finite dimensional spaces that

|akN |�c1<+�, k=0, 1, ..., mn&2, \N # N.

According to the Bolzano�Weierstrass Theorem by passing to a sub-
sequence if necessary we may suppose that PN � P (N � �). Then
P # P*n&1(x) and (2.8) holds.

Let us prove the second part of the lemma. Assume

P(t)= `
p

k=1
\ t& yk

x& yk+
pk

,

where +�> y1> y2> } } } > yr>&�, p1 , p2 , ..., pr # N.

Claim 1. pk=1, k=1, 2, ..., r.

Suppose to the contrary that pk>1 for some k, 1�k�r. Choose
Q(t)=&(t&x) P(t)�(t& yk)2, which obviously satisfies Condition A. In
this case by (2.10) we can write

q(t)=C(t) Q(t), (2.16)

where

C(t)=(t&x) j&m [&g$*(0, t)(t& yk)2+m(t&x)2 g(0, t)]

is a polynomial in t. Relation (2.11) shows �q��Q and hence C(t)#C. By
(2.6)

C=C( yk)=m( yk&x) j&m+2 g(0, yk)

=m( yk&x) j&m+2 Bj (P, x; yk)>0.

Then

|
R

[(t&x) P(t)]m&1 q(t) d:(t)=&C |
R

[(t&x) P(t)]m

(t& yk)2 d:(t)<0,

contradicting (2.9). This proves Claim 1.

Claim 2. r�n&2.

Suppose not and let r<n&2. By Claim 1 we have �P=r<n&2.
Choose Q(t)=&(t&x) P(t), which belongs to Pn&2 and obviously
satisfies Condition A. In the present case by (2.10) we get (2.16), where

C(t)=(t&x) j&m [&g$*(0, t)+m(t&x)2 g(0, t)].
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Again C(t)#C. Since �g$*(0, } )<�[( } &x)2 g(0, } )], by (2.6) C=
mbm& j&2>0. This leads to a contradiction

|
R

[(t&x) P(t)]m&1 q(t) d:(t)=&C |
R

[(t&x) P(t)]m d:(t)<0

and proves Claim 2.

Claim 3. We have that

|
R

(t&x)m&1 P(t)m

t& yk
d:(t)=0, k=1, 2, ..., r, (2.17)

and if r=n&2 then

|
R

(t&x)m&1 P(t)m d:(t)=0. (2.18)

To prove (2.17) choose Q(t)=\P(t)�(t& yk), 1�k�r, which obviously
satisfies Condition A. By the same argument as above we obtain (2.16) and
by (2.6)

C(t)=(t&x) j&m+1 [\g$*(0, t)(t& yk)+m(t&x) g(0, t)]

#C( yk)=m( yk&x) j&m+2 g(0, yk)

=m( yk&x) j&m+2 B j (P, x; yk)>0.

Then

|
R

[(t&x) P(t)]m&1 q(t) d:(t)=C( yk) |
R

[(t&x) P(t)]m&1 Q(t) d:(t)

�0, (2.19)

which implies (2.17).
Similarly, choosing Q(t)=\P(t) we can prove (2.18) if r=n&2.
Now we are in position to prove (2.15). If r=n&1 then (2.17) means

(2.15), since the set [P(t)�(t& y1), ..., P(t)�(t& yn&1)] spans the space
Pn&2 ; if r=n&2 then (2.17) and (2.18) implies (2.15), since the set
[P(t)�(t& y1), ..., P(t)�(t& yn&2), P(t)] spans the space Pn&2 . K

The first main result in this paper is the following
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Theorem 1. Let x # R be fixed.

(a) There exists a unique polynomial P # P*n&1(x) such that (2.8) holds
for every j # M;

(b) �P�n&2 and P has distinct real zeros only;

(c) Equation (2.8) is true if and only if (2.15) holds;

(d) We have

*m&2, n, m(d:, x)

= min
Q # Pa&1, Q(x)=1

1
(m&2)! |R

Q(t)m (t&x)m&2 d:(t). (2.20)

Proof. We distinguish the two cases when j=m&2 and j<m&2.

Case 1. j=m&2.

Let

Gx=[(t&x) Q(t): Q # Pn&2]. (2.21)

Let us consider the extremal problem: find P # Pn&1 such that P(x)=1 and

|
R

P(t)m (t&x)m&2 d:(t)

= min
Q # Pn&1, Q(x)=1 |R

Q(t)m (t&x)m&2 d:(t). (2.22)

It is easy to see that (2.22) is true if and only if R=1&P( # Gx) satisfies

|
R

[1&R(t)]m (t&x)m&2 d:(t)

= min
Q # Gx

|
R

[1&Q(t)]m (t&x)m&2 d:(t). (2.23)

But this is a problem of Lm approximation to the function 1 with respect
to the measure (t&x)m&2 d:(t) from the (n&1)-dimensional subspace Gx .
By [4, Corollary 2.2, p. 98, Corollary 3.5, p. 111, Theorem 1.11, p. 56] we
conclude that there is a unique function R # Gx satisfying (2.23) and further
(2.23) holds if and only if

|
R

[1&R(t)]m&1 q(t)(t&x)m&2 d:(t)=0, \q # Gx . (2.24)
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Recalling R=1&P, (2.24) is equivalent to (2.15). This means by (2.21)
that there is a unique polynomial P # Pn&1 with P(x)=1 satisfying (2.22)
and further (2.22) holds if and only if (2.15) is valid. Equation (2.15) shows
that the polynomial (t&x) P(t) in t changes sign at least n&1 times and
hence P(t) changes sign at least n&2 times. But P # Pn&1 . So P has dis-
tinct real zeros only and hence P # P*n&1(x). By (2.1), (2.4), and (2.5) we
see

Am&2(P, x; t)=
1

(m&2)!
(t&x)m&2 P(t)m. (2.25)

This proves Statements (a)�(d) for the case when j=m&2.

Case 2. j<m&2. In this case by Lemma 3 it suffices to show the
uniqueness of a solution of (2.8) and the implication (2.15) O (2.8). To this
end it is enough to establish the uniqueness of a solution satisfying (2.15),
which is verified by Case 1. K

As a immediate consequence of Theorem 1 we state

Corollary 1. We have

*0n2(d:, x)=*n(d:, x). (2.26)

Corollary 2. If P # P*n&1(x) satisfies (2.8) then the interval 2(d:) con-
tains at least n&2 zeros of P.

Proof. Suppose to the contrary that 2(d:) contains r(�n&3) zeros of
P, say, y1 , ..., yr . For q(t)=(t&x)(t& y1) } } } (t& yr) we see that the poly-
nomial [(t&x) P(t)]m&1 q(t) does not change sign in 2(d:), which implies
that its integral over 2(d:) is not zero, contradicting (2.15). K

The second main result in this paper is the following

Theorem 2. We have

*jknm(d:)=*jnm(d:, xkn(d:)), k=1, 2, ..., n, j # M. (2.27)

Proof. Let k, 1�k�n, and j # M be fixed. If (1.2) is the zeros of
Pn(d:, m; t), then it follows from (1.1) by [4, Theorem 1.11, p. 56] that

|
R

Pn(d:, m; t)m&1 q(t) d:(t)=0, \q # Pn&1 ,
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or equivalently

|
R

[(t&xk) P(t)]m&1 q(t) d:(t)=0, \q # Pn&1 , (2.28)

where P(t)=>i{k [(t&xi)�(xk&xi)]. According to Theorem 1, Eq. (2.28)
means

*jnm(d:, xk)=|
R

Aj (P, xk ; t) d:(t).

Inserting f (t)=Aj (P, xk ; t) into (1.3) the above relation immediately gives
(2.27). K

Theorem 3. (a) If d:�d; then

*jnm(d:, x)�*jnm(d;, x), x # R, j # M; (2.29)

(b) we have

*0nm(d:, x)�*mn�2(d:, x). (2.30)

Proof. (a) Inequality (2.29) follows directly from (2.3).

(b) By (1.4)

*mn�2(d:, x)= min
Q # P(mn�2)&1

1
Q(x)2 |

R

Q(t)2 d:(t).

Then

Q(x)2�*mn�2(d:, x)&1 |
R

Q(t)2 d:(t), Q # P(mn�2)&1 . (2.31)

Let P # P*n&1(x) satisfy (2.8) with j=0. Since A0(P, x; t)�0 in R, by [5,
Theorem 1.21.2, p. 5] it may be written as

A0(P, x; t)=R(t)2+Q(t)2, R, Q # P(mn�2)&1 .

Thus by (2.31)

A0(P, x; t)=R(t)2+Q(t)2�*mn�2(d:, t)&1 |
R

[R(s)2+Q(s)2] d:(s)

=*mn�2(d:, t)&1 |
R

A0(P, x; s) d:(s)

=*mn�2(d:, t)&1 *0nm(d:, x). (2.32)

290 YING GUANG SHI



Putting t=x we get

1�*mn�2(d:, x)&1 *0nm(d:, x),

which is equivalent to (2.30). K
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